Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Sci Total Environ ; : 172565, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642750

RESUMO

Emergent macrophytes are of key importance for the structure and functioning of wetland ecosystems and play a significant role in climate regulation, element cycling, and greenhouse gas emissions. However, our understanding of how greenhouse gas (GHG) flux differs among macrophyte species and its links with the microbial community remains limited. In this study, we investigated the rhizosphere microbial communities (including total bacteria, methanotrophs, and methanogens) and the GHG fluxes associated with four emergent macrophytes-Phragmites australis, Thalia dealbata, Pontederia cordata, and Zizania latifolia-collected from Xuanwu Lake wetland, China. We observed the highest CH4 flux (FCH4) (9.35 ±â€¯2.52 mg·m-2·h-1) from Z. latifolia zone, followed by P. australis, P. cordata, and T. dealbata zones (5.38 ±â€¯1.63, 2.38 ±â€¯2.91, and 2.02 ±â€¯0.69 mg·m-2·h-1, respectively). In zone without macrophyte growth, the CH4 flux was 0.02 ±â€¯0.24 mg·m-2·h-1. Methanogenesis is methylotrophic at all sites, as the 13C-CH4 values were higher than -64 ‰ and the fractionation coefficient were lower than 1.055. We found a positive linear relationship between CH4 flux and the methanogen community, in particular the relative abundance of Methanobacterium and Methanosarcina, indicating that the variations in CH4 flux among the studied macrophyte species might be attributed to differences in rhizosphere microbial communities. The methane emission in various macrophyte zones may be due to the higher capacity of methanogenesis compared to methane oxidation which is inhibited by nutrient-rich sediments. Our findings provide insights for selecting specific emergent macrophytes characterized by low CH4 flux in wetland ecological restoration.

2.
Glob Chang Biol ; 30(3): e17239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38500015

RESUMO

Dissimilatory iron reduction (DIR) can drive the release of organic carbon (OC) as carbon dioxide (CO2 ) by mediating electron transfer between organic compounds and microbes. However, DIR is also crucial for carbon sequestration, which can affect inorganic-carbon redistribution via iron abiotic-phase transformation. The formation conditions of modern carbonate-bearing iron minerals (ICFe ) and their potential as a CO2 sink are still unclear. A natural environment with modern ICFe , such as karst lake sediment, could be a good analog to explore the regulation of microbial iron reduction and sequential mineral formation. We find that high porosity is conducive to electron transport and dissimilatory iron-reducing bacteria activity, which can increase the iron reduction rate. The iron-rich environment with high calcium and OC can form a large sediment pore structure to support rapid DIR, which is conducive to the formation and growth of ICFe . Our results further demonstrate that the minimum DIR threshold suitable for ICFe formation is 6.65 µmol g-1 dw day-1 . DIR is the dominant pathway (average 66.93%) of organic anaerobic mineralization, and the abiotic-phase transformation of Fe2+ reduces CO2 emissions by ~41.79%. Our findings indicate that as part of the carbon cycle, DIR not only drives mineralization reactions but also traps carbon, increasing the stability of carbon sinks. Considering the wide geographic distribution of DIR and ICFe , our findings suggest that the "iron mesh" effect may become an increasingly important vector of carbon sequestration.


Assuntos
Sequestro de Carbono , Ferro , Ferro/química , Ferro/metabolismo , Dióxido de Carbono , Oxirredução , Ciclo do Carbono , Compostos Férricos/metabolismo
3.
Water Res ; 254: 121420, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492478

RESUMO

Global warming is leading to extended stratification in deep lakes, which may exacerbate phosphorus (P) limitation in the upper waters. Conversion of labile dissolved organic P (DOP) is a possible adaptive strategy to maintain primary production. To test this, the spatiotemporal distributions of various soluble P fractions and phosphomonesterase (PME)/phosphodiesterase (PDE) activities were investigated in Lake Fuxian during the stratification period and the transition capacity of organic P and its impact on primary productivity were evaluated. The results indicated that the DOP concentration (mean 0.20 ± 0.05 µmol L-1) was significantly higher than that of dissolved inorganic P (DIP) (mean 0.08 ± 0.03 µmol L-1) in the epilimnion and metalimnion, which were predominantly composed of orthophosphate monoester (monoester-P) and orthophosphate diesters (diester-P). The low ratio of diester-P / monoester-P and high activities of PME and PDE indicate DOP mineralization in the epilimnion and metalimnion. We detected a DIP threshold of approximately 0.19 µmol L-1, corresponding to the highest total PME activity in the lake. Meta-analysis further demonstrated that DIP thresholds of PME activities were prevalent in oligotrophic (0.19 µmol L-1) and mesotrophic (0.74 µmol L-1) inland waters. In contrast to the phosphate-sensitive phosphatase PME, dissolved PDE was expressed independent of phosphate availability and its activity invariably correlated with chlorophyll a, suggesting the involvement of phytoplankton in DOP utilization. This study provides important field evidence for the DOP transformation processes and the strategy for maintaining primary productivity in P-deficient scenarios, which contributes to the understanding of P cycles and the mechanisms of system adaptation to future long-term P limitations in stratified waters.


Assuntos
Lagos , Fósforo , Clorofila A , Fosfatos , Fitoplâncton
4.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37962956

RESUMO

Targeted metagenomic sequencing is an emerging strategy to survey disease-specific microbiome biomarkers for clinical diagnosis and prognosis. However, this approach often yields inconsistent or conflicting results owing to inadequate study power and sequencing bias. We introduce Taxa4Meta, a bioinformatics pipeline explicitly designed to compensate for technical and demographic bias. We designed and validated Taxa4Meta for accurate taxonomic profiling of 16S rRNA amplicon data acquired from different sequencing strategies. Taxa4Meta offers significant potential in identifying clinical dysbiotic features that can reliably predict human disease, validated comprehensively via reanalysis of individual patient 16S data sets. We leveraged the power of Taxa4Meta's pan-microbiome profiling to generate 16S-based classifiers that exhibited excellent utility for stratification of diarrheal patients with Clostridioides difficile infection, irritable bowel syndrome, or inflammatory bowel diseases, which represent common misdiagnoses and pose significant challenges for clinical management. We believe that Taxa4Meta represents a new "best practices" approach to individual microbiome surveys that can be used to define gut dysbiosis at a population-scale level.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Disbiose , RNA Ribossômico 16S/genética , Diarreia/genética
5.
Environ Res ; 242: 117754, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016497

RESUMO

Submerged macrophytes play important roles in nutrient cycling and are widely used in ecological restoration to alleviate eutrophication and improve water quality in lakes. Epiphytic microbial communities on leaves of submerged macrophytes might promote nitrogen cycling, but the mechanisms and quantification of their contributions remain unclear. Here, four types of field zones with different nutrient levels and submerged macrophytes, eutrophic + Vallisneria natans (EV), eutrophic + V. natans + Hydrilla verticillata, mesotrophic + V. natans + H. verticillata, and eutrophic without macrophytes were selected to investigate the microbial communities that involved in nitrification and denitrification. The alpha diversity of bacterial community was higher in the phyllosphere than in the water, and that of H. verticillata was higher compared to V. natans. Bacterial community structures differed significantly between the four zones. The highest relative abundance of dominant bacterioplankton genera involved in nitrification and denitrification was observed in the EV zone. Similarly, the alpha diversity of the epiphytic ammonia-oxidizing archaea and nosZI-type denitrifiers were highest in the EV zone. Consist with the diversity patterns, the potential denitrification rates were higher in the phyllosphere than those in the water. Higher potential denitrification rates in the phyllosphere were also found in H. verticillata than those in V. natans. Anammox was not detected in all samples. Nutrient loads, especially nitrogen concentrations were important factors influencing potential nitrification, denitrification rates, and bacterial communities, especially for the epiphytic nosZI-type taxa. Overall, we observed that the phyllosphere harbors more microbes and promotes higher denitrification rates compared to water, and epiphytic bacterial communities are shaped by nitrogen nutrients and macrophyte species, indicating that epiphytic microorganisms of submerged macrophytes can effectively contribute to the N removal in shallow lakes.


Assuntos
Desnitrificação , Hydrocharitaceae , Nitrogênio , Nitrificação , Bactérias/genética , Organismos Aquáticos , Lagos/microbiologia
6.
Gastroenterology ; 166(4): 645-657.e14, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38123024

RESUMO

BACKGROUND & AIMS: Functional abdominal pain disorders (FAPDs) are more prevalent in female patients. Dietary fiber may alleviate FAPD symptoms; however, whether this effect is sex dependent remains unclear. We investigated the sex dependency of dietary fiber benefit on abdominal pain in children with FAPDs and explored the potential involvement of the gut microbiome. METHODS: In 2 cross-sectional cohorts of children with FAPDs (n = 209) and healthy control individuals (n = 105), we correlated dietary fiber intake with abdominal pain symptoms after stratifying by sex. We also performed sex-stratified and sex-interaction analyses on data from a double-blind trial in children with irritable bowel syndrome randomized to psyllium fiber (n = 39) or placebo (n = 49) for 6 weeks. Shotgun metagenomics was used to investigate gut microbiome community changes potentially linking dietary fiber intake with abdominal pain. RESULTS: In the cross-sectional cohorts, fiber intake inversely correlated with pain symptoms in boys (pain episodes: r = -0.24, P = .005; pain days: r = -0.24, P = 0.004) but not in girls. Similarly, in the randomized trial, psyllium fiber reduced the number of pain episodes in boys (P = .012) but not in girls. Generalized linear regression models confirmed that boys treated with psyllium fiber had greater reduction in pain episodes than girls (P = .007 for fiber × sex × time interaction). Age, sexual development, irritable bowel syndrome subtype, stool form, and microbiome composition were not significant determinants in the dietary fiber effects on pain reduction. CONCLUSIONS: Dietary fiber preferentially reduces abdominal pain frequency in boys, highlighting the importance of considering sex in future dietary intervention studies for FAPDs. (ClincialTrials.gov, Number NCT00526903).


Assuntos
Síndrome do Intestino Irritável , Psyllium , Criança , Feminino , Humanos , Masculino , Dor Abdominal/etiologia , Dor Abdominal/tratamento farmacológico , Estudos Transversais , Fibras na Dieta , Síndrome do Intestino Irritável/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
FEMS Microbiol Ecol ; 100(1)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38148131

RESUMO

Microcystis blooms have a marked effect on microbial taxonomical diversity in eutrophic lakes, but their influence on the composition of microbial functional genes is still unclear. In this study, the free-living microbial functional genes (FMFG) composition was investigated in the period before Microcystis blooms (March) and during Microcystis blooms (July) using a comprehensive functional gene array (GeoChip 5.0). The composition and richness of FMFG in the water column was significantly different between these two periods. The FMFG in March was enriched in the functional categories of nitrogen, sulfur, and phosphorus cycling, whereas the FMFG in July was enriched in carbon cycling, organic remediation, and metal homeostasis. Molecular ecological network analysis further demonstrated fewer functional gene interactions and reduced complexity in July than in March. Module hubs of the March network were mediated by functional genes associated with carbon, nitrogen, sulfur, and phosphorus, whereas those in July by a metal homeostasis functional gene. We also observed stronger deterministic processes in the FMFG assembly in July than in March. Collectively, this study demonstrated that Microcystis blooms induced significant changes in FMFG composition and metabolic potential, and abundance-information, which can support the understanding and management of biogeochemical cycling in eutrophic lake ecosystems.


Assuntos
Microcystis , Microcystis/genética , Microcystis/metabolismo , Lagos/química , Ecossistema , China , Fósforo/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Enxofre/metabolismo , Eutrofização
8.
Sci Total Environ ; 912: 169589, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38151123

RESUMO

Inland waters are important sources of atmospheric methane (CH4), with a major contribution from the CH4 ebullition pathway. However, there is still a lack of CH4 ebullition flux (eFCH4) and their temperature sensitivity (Q10) in shallow lakes, which might lead to large uncertainties in CH4 emission response from aquatic to climate and environmental change. Herein, the magnitude and regulatory of two CH4 pathways (ebullition and diffusion) were studied in subtropical Lake Chaohu, China, using the real-time portable greenhouse gas (GHG) analyzer-floating chamber method at 18 sites over four seasons. eFCH4 (12.06 ± 4.10 nmol m-2 s-1) was the dominant contributing pathway (73.0 %) to the two CH4 emission pathways in Lake Chaohu. The whole-lake mass balance calculation demonstrated that 56.6 % of the CH4 emitted from the sediment escaped through the ebullition pathway. eFCH4 was significantly higher in the western (WL: 16.54 ± 22.22 nmol m-2 s-1) and eastern lake zones (EL: 11.89 ± 15.43 nmol m-2 s-1) than in the middle lake zone (ML: 8.86 ± 13.78 nmol m-2 s-1; p < 0.05) and were significantly higher in the nearshore lake zone (NL: 15.94 ± 19.58 nmol m-2 s-1) than in the pelagic lake zone (PL: 6.64 ± 12.37 nmol m-2 s-1; p < 0.05). eFCH4 was significantly higher in summer (32.12 ± 13.82 nmol m-2 s-1) than in other seasons (p < 0.05). eFCH4 had a strong temperature dependence. Sediment total organic carbon (STOC) is an important ecosystem level Q10 driver of eFCH4. The meta-analysis also verified that across ecosystems the ecosystem-level Q10 of eFCH4 was significantly positively correlated with STOC and latitude (p < 0.05). This study suggests that eFCH4 will become increasingly crucial in shallow lake ecosystems as climate change and human activities increase. The potential increase in ebullition fluxes in high-latitude lakes is of great importance.

9.
J Hazard Mater ; 465: 133341, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38150756

RESUMO

The ecological risk posed by trace metals in the plateau lacustrine sediments of China has attracted worldwide attentions. A better understanding of the kinetic diffusion processes and bioavailability of these metals in plateau lakes is needed. Using the diffusive gradient in thin films (DGT) and Rhizon, concentrations of Mn, Mo, Ni, Cr, and Co in the sediments, labile fractions, and interstitial water of Lake Fuxian were comprehensively analyzed. According to the DGT-induced fluxes in sediments (DIFS) model, fully sustained and unsustained resupplies are possible ways in which metals are released from solids to the solution. Moreover, the resupply characteristics of metals varied at different depths in the sediments and at different sites in the lake. Based on the DIFS model, the effective concentrations (CE) of the trace metals were calculated and all except Cr showed good linear relationships with the DGT-labile concentrations, indicating that the CE values were valuable for predicting metal bioavailability. According to the CE values, the metal contamination released from the sediments was relatively low based on the Monte Carlo simulation. This study provides a comprehensive solution for studying the environmental behavior and potential ecological risks of toxic metals in sedimentary environment.

10.
Sci Total Environ ; 903: 166229, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586539

RESUMO

Leaves and roots of submerged macrophytes provide extended surfaces and stable internal tissues for distinct microorganisms to rest, but how these microorganisms interact with each other across different niches and ultimately drive the distribution through horizontal and vertical transmissions remains largely undetermined. Knowledge of the mechanisms of assemblage and transmission in aquatic macrophytes-associated microbial communities will help to better understanding their important roles in plant fitness and benefit ecological functions. Here, we conducted a microcosmic experiment based on in situ lake samples to investigate the bacterial community assemblage, transmission, and co-occurrence patterns in different niches of a typical submerged macrophyte, Vallisneria natans (V. natans), including seed endosphere, as well as environmental (water and bulk sediment), epiphytic (phyllosphere and rhizosphere), and endophytic (leaf and root endosphere) microhabitats of both leaves and roots representatives of the above- and below- ground niches (AGNs and BGNs), respectively. We found the bacterial communities colonized in epiphytic niches not only exhibited the highest diversity compared to adjacent environmental and endophytic niches, but also dominated the interactions between those bacterial members of neighboring niches in both AGNs and BGNs. The host plants promoted niche specificity at bacterial community-level, as confirmed by the proportion of bacterial specialists increased with plant proximity, especially in the BGNs. Furthermore, the bacterial taxa colonized in the AGNs exhibited higher horizontal and vertical transmission capacities than those in the BGNs, especially in the vertical transmission from seeds to leaves (41.38 %) than roots (0.42 %). Meanwhile, the bacterial co-occurrence network in AGNs was shown to have stronger small-world characteristics but weaker stability than those in the BGNs. Overall, this study cast new light on the plant microbiome in the aquatic environment, thus better promoting the potential development of strategies for breeding aquatic macrophyte holobiont with enhanced water purification and pollutant removal capabilities in the future.

11.
NPJ Biofilms Microbiomes ; 9(1): 54, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537181

RESUMO

Fecal microbiota transplantation (FMT) has proven to be an effective treatment for recurrent Clostridioides difficile infection (rCDI) in both adult and pediatric patients. However, as microbiome development is a critical factor in children, it remains unclear whether adult fecal donors can provide age-appropriate functional restoration in pediatric patients. To address this issue, we conducted an integrated systems approach and found that concordant donor strain engraftment, along with metabolite restoration, are associated with FMT outcomes in both adult and pediatric rCDI patients. Although functional restoration after FMT is not strain-specific, specialized metabolic functions are retained in pediatric patients when adult fecal donors are used. Furthermore, we demonstrated broad utility of high-resolution variant-calling by linking probiotic-strain engraftment with improved gastrointestinal symptoms in adults with irritable bowel syndrome and in children with autism spectrum disorder. Our findings emphasize the importance of strain-level identification when assessing the efficacy of probiotics and microbiota-based therapeutics.


Assuntos
Transtorno do Espectro Autista , Clostridioides difficile , Infecções por Clostridium , Microbiota , Adulto , Humanos , Criança , Fezes , Transplante de Microbiota Fecal , Infecções por Clostridium/terapia
12.
Water Res ; 242: 120252, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393808

RESUMO

Phytoplankton blooms, an important indicator of severe eutrophication, are a globally significant consequence of anthropogenic activities and climate change on freshwater lakes. Shifts in microbial communities during phytoplankton blooms have been extensively investigated, yet we have a limited understanding of how distinct assembly processes underlying the temporal dynamics of freshwater bacterial communities within different habitats respond to the succession of phytoplankton blooms. To address this knowledge gap, we collected both water and sediment samples in a subtropical eutrophic lake over a complete period of phytoplankton blooms to assess the dynamics of bacterial communities and the temporal shifts in assembly processes. Our results showed that phytoplankton blooms strongly altered the diversity, composition, and coexistence patterns of both planktonic and sediment bacterial communities (PBC and SBC), but the successional patterns differed between PBC and SBC. PBC were less temporally stable under bloom-induce disturbances, with higher variations in temporal dynamics and greater sensitivity to environmental fluctuations. Furthermore, the temporal assembly patterns of bacterial communities in both habitats were mainly driven by homogeneous selection and ecological drift. In the PBC, the role of selection decreased over time, while ecological drift became increasingly important. Conversely, in the SBC, the relative impact of selection and ecological drift on community assemblages fluctuated less over time, with selection remaining the dominant process throughout the bloom.

13.
Cancer Med ; 12(14): 15246-15255, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37278137

RESUMO

BACKGROUND: Spread through air spaces (STAS) is a pattern of invasion recently identified in non-small cell lung cancer (NSCLC), with a poor prognosis. However, the predictive impact of STAS in stage IB NSCLC is not well understood. This investigation aims to assess the prognostic influence of STAS in stage IB NSCLC. METHODS: We reviewed 130 resected stage IB NSCLC between 2010 and 2015. Beyond the central tumor edge, lung parenchymal air gaps containing cancer cells were identified as STAS. In order to estimate recurrence-free survival (RFS) and overall survival (OS), Cox models and Kaplan-Meier techniques were utilized. Logistic regression analysis was employed to define the factors influencing STAS. RESULTS: Of 130 patients, 72 (55.4%) had STAS. STAS was a significant prognosticator. Kaplan-Meier method showed that STAS-positive patients had a significantly lower OS and RFS than STAS-negative patients (5-year OS, 66.5% vs. 90.4%, p = 0.02; 5-year RFS, 59.5% vs. 89.7%, p = 0.004) In a semiquantitative assessment, the RFS and OS were shorter in survival analysis when STAS increased (5-year RFS, 89.7%, no STAS, 61.8%, low STAS, 57.2%, high STAS, p = 0.013; 5-year OS, 90.4%, no STAS, 78.3%, low STAS, 57.2%, high STAS, p = 0.002). The association between STAS and poor differentiation, adenocarcinoma, and vascular invasion (p value was <0.001, 0.047, and 0.041, respectively) was statistically significant. CONCLUSIONS: The STAS is an aggressive pathological feature. RFS and OS could be significantly reduced by STAS, while it also serves as an independent predictor.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos
14.
Appl Environ Microbiol ; 89(5): e0210822, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37129483

RESUMO

The 16S rRNA gene has been extensively used as a molecular marker to explore evolutionary relationships and profile microbial composition throughout various environments. Despite its convenience and prevalence, limitations are inevitable. Variable copy numbers, intragenomic heterogeneity, and low taxonomic resolution have caused biases in estimating microbial diversity. Here, analysis of 24,248 complete prokaryotic genomes indicated that the 16S rRNA gene copy number ranged from 1 to 37 in bacteria and 1 to 5 in archaea, and intragenomic heterogeneity was observed in 60% of prokaryotic genomes, most of which were below 1%. The overestimation of microbial diversity caused by intragenomic variation and the underestimation introduced by interspecific conservation were calculated when using full-length or partial 16S rRNA genes. Results showed that, at the 100% threshold, microbial diversity could be overestimated by as much as 156.5% when using the full-length gene. The V4 to V5 region-based analyses introduced the lowest overestimation rate (4.4%) but exhibited slightly lower species resolution than other variable regions under the 97% threshold. For different variable regions, appropriate thresholds rather than the canonical value 97% were proposed for minimizing the risk of splitting a single genome into multiple clusters and lumping together different species into the same cluster. This study has not only updated the 16S rRNA gene copy number and intragenomic variation information for the currently available prokaryotic genomes, but also elucidated the biases in estimating prokaryotic diversity with quantitative data, providing references for choosing amplified regions and clustering thresholds in microbial community surveys. IMPORTANCE Microbial diversity is typically analyzed using marker gene-based methods, of which 16S rRNA gene sequencing is the most widely used approach. However, obtaining an accurate estimation of microbial diversity remains a challenge, due to the intragenomic variation and low taxonomic resolution of 16S rRNA genes. Comprehensive examination of the bias in estimating such prokaryotic diversity using 16S rRNA genes within ever-increasing prokaryotic genomes highlights the importance of the choice of sequencing regions and clustering thresholds based on the specific research objectives.


Assuntos
Bactérias , Microbiota , RNA Ribossômico 16S/genética , Genes de RNAr , Bactérias/genética , Archaea/genética , Filogenia , Análise de Sequência de DNA
15.
Water Res ; 240: 120096, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37229838

RESUMO

Rivers are considered as an important source of methane (CH4) to the atmosphere, but our understanding for the methanogenic pathway in rivers and its linkage with CH4 emission is very limited. Here, we investigated the diffusive flux of CH4 and its stable carbon isotope signature (δ13C-CH4) along the river-estuary continuum of the Yangtze River. The diffusive CH4 flux was estimated to 27.9 ± 11.4 µmol/m2/d and 36.5 ± 24.4 µmol/m2/d in wet season and dry season, respectively. The δ13C-CH4 values were generally lower than -60‰, with the fractionation factor (αc) higher than 1.055 and the isotope separation factor (εc) ranged from 55 to 100. In situ microbial composition showed that hydrogenotrophic methanogens accounts for over 70% of the total reads. Moreover, the incubation test showed that the headspace CH4 concentration by adding CO2/H2 to the sediment was orders of magnitude higher than that by adding trimethylamine and sodium acetate. These results jointly verified the river-estuary continuum is a minor CH4 source and dominated by hydrogenotrophic pathway. Based on the methanogenic pathway here and previous reported data in the same region, the historical variation of diffusive CH4 flux was calculated and results showed that CH4 emission has reduced 82.5% since the construction of Three Gorges Dam (TGD). Our study verified the dominant methanogenic pathway in river ecosystems and clarified the effect and mechanism of dam construction on riverine CH4 emission.


Assuntos
Estuários , Rios , Ecossistema , Isótopos de Carbono/análise , Carbono , Metano/metabolismo
16.
Biology (Basel) ; 12(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37106778

RESUMO

Intraguild predation (IGP) can have a significant impact on phytoplankton biomass, but its effects on their diversity and assemblage composition are not well understood. In this study, we constructed an IGP model based on the common three-trophic food chain of "fish (or shrimp)-large branchiopods (Daphnia)-phytoplankton", and investigated the effects of IGP on phytoplankton assemblage composition and diversity in outdoor mesocosms using environmental DNA high-throughput sequencing. Our results indicated that the alpha diversities (number of amplicon sequence variants and Faith's phylogenetic diversity) of phytoplankton and the relative abundance of Chlorophyceae increased with the addition of Pelteobagrus fulvidraco, while similar trends were found in alpha diversities but with a decrease in the relative abundance of Chlorophyceae in the Exopalaemon modestus treatment. When both predators were added to the community, the strength of collective cascading effects on phytoplankton alpha diversities and assemblage composition were weaker than the sum of the individual predator effects. Network analysis further showed that this IGP effect also decreased the strength of collective cascading effects in reducing the complexity and stability of the phytoplankton assemblages. These findings contribute to a better understanding of the mechanisms underlying the impacts of IGP on lake biodiversity, and provide further knowledge relevant to lake management and conservation.

17.
Microbiol Spectr ; 11(3): e0039823, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37098981

RESUMO

Understanding the biogeographical and biodiversity patterns of bacterial communities is essential in unraveling their responses to future environmental changes. However, the relationships between marine planktonic bacterial biodiversity and seawater chlorophyll a are largely understudied. Here, we used high-throughput sequencing to study the biodiversity patterns of marine planktonic bacteria across a broad chlorophyll a gradient spanning from the South China Sea across the Gulf of Bengal to the northern Arabian Sea. We found that the biogeographical patterns of marine planktonic bacteria complied with the scenario of homogeneous selection, with chlorophyll a concentration being the key environmental selecting variable of bacteria taxa. The relative abundance of Prochlorococcus, the SAR11 clade, the SAR116 clade, and the SAR86 clade significantly decreased in habitats with high chlorophyll a concentrations (>0.5 µg/L). Free-living bacteria (FLB) and particle-associated bacteria (PAB) displayed contrasting alpha diversity and chlorophyll a relationships with a positive linear correlation for FLB but a negative correlation for PAB. We further found that PAB had a narrower niche breadth of chlorophyll a than did FLB, with far fewer bacterial taxa being favored at higher chlorophyll a concentrations. Higher chlorophyll a concentrations were linked to the enhanced stochastic drift and reduced beta diversity of PAB but to the weakened homogeneous selection, enhanced dispersal limitation, and increased beta diversity of FLB. Taken together, our findings might broaden our knowledge about the biogeography of marine planktonic bacteria and advance the understanding of bacterial roles in predicting ecosystem functioning under future environmental changes that are derived from eutrophication. IMPORTANCE One of the long-standing interests of biogeography is to explore diversity patterns and uncover their underlying mechanisms. Despite intensive studies on the responses of eukaryotic communities to chlorophyll a concentrations, we know little about how changes in seawater chlorophyll a concentrations affect free-living bacteria (FLB) and particle-associated bacteria (PAB) diversity patterns in natural systems. Our biogeography study demonstrated that marine FLB and PAB displayed contrasting diversity and chlorophyll a relationships and exhibited completely different assembly mechanisms. Our findings broaden our knowledge about the biogeographical and biodiversity patterns of marine planktonic bacteria in nature systems and suggest that PAB and FLB should be considered independently in predicting marine ecosystem functioning under future frequent eutrophication.


Assuntos
Ecossistema , Plâncton , Clorofila A , Plâncton/genética , Biodiversidade , Bactérias/genética , Água do Mar/microbiologia , China
18.
Environ Microbiome ; 18(1): 19, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932455

RESUMO

The relationships between biodiversity-ecosystem functioning (BEF) for microbial communities are poorly understood despite the important roles of microbes acting in natural ecosystems. Dilution-to-extinction (DTE), a method to manipulate microbial diversity, helps to fill the knowledge gap of microbial BEF relationships and has recently become more popular with the development of high-throughput sequencing techniques. However, the pattern of community assembly processes in DTE experiments is less explored and blocks our further understanding of BEF relationships in DTE studies. Here, a microcosm study and a meta-analysis of DTE studies were carried out to explore the dominant community assembly processes and their potential effect on exploring BEF relationships. While stochastic processes were dominant at low dilution levels due to the high number of rare species, the deterministic processes became stronger at a higher dilution level because the microbial copiotrophs were selected during the regrowth phase and rare species were lost. From the view of microbial functional performances, specialized functions, commonly carried by rare species, are more likely to be impaired in DTE experiments while the broad functions seem to be less impacted due to the good performance of copiotrophs. Our study indicated that shifts in the prokaryotic community and its assembly processes induced by dilutions result in more complex BEF relationships in DTE experiments. Specialized microbial functions could be better used for defining BEF. Our findings may be helpful for future studies to design, explore, and interpret microbial BEF relationships using DTE.

19.
Water Res ; 234: 119833, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889095

RESUMO

Conventional aerobic CH4-oxidizing bacteria (MOB) are frequently detected in anoxic environments, but their survival strategy and ecological contribution are still enigmatic. Here we explore the role of MOB in enrichment cultures under O2 gradients and an iron-rich lake sediment in situ by combining microbiological and geochemical techniques. We found that enriched MOB consortium used ferric oxides as alternative electron acceptors for oxidizing CH4 with the help of riboflavin when O2 was unavailable. Within the MOB consortium, MOB transformed CH4 to low molecular weight organic matter such as acetate for consortium bacteria as a carbon source, while the latter secrete riboflavin to facilitate extracellular electron transfer (EET). Iron reduction coupled to CH4 oxidation mediated by the MOB consortium was also demonstrated in situ, reducing 40.3% of the CH4 emission in the studied lake sediment. Our study indicates how MOBs survive under anoxia and expands the knowledge of this previously overlooked CH4 sink in iron-rich sediments.


Assuntos
Elétrons , Lagos , Humanos , Lagos/química , Oxirredução , Oxidantes , Ferro , Hipóxia , Óxidos , Metano , Sedimentos Geológicos/química
20.
FEMS Microbiol Ecol ; 99(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36963776

RESUMO

The microbes that are attached to aquatic plants play critical roles in nutrient cycles and the maintenance of water quality. However, their community compositions, biodiversity and functions have not been well explored for the invasive plants in inland waters. Here, the co-occurrence patterns between bacteria and fungi on the leaves of Alternanthera philoxeroides and their potential ecological interactions were studied during the growing seasons. Along with significant variations in the alpha diversity of attached microbes over time, shifts in their community composition were significantly associated with the dynamics of plant stoichiometry, substrate composition and extracellular enzyme activity. Deterministic processes (heterogenous selection) play a predominant role in community assembly of the attached bacteria, while stochasticity (undominated process) was the major driver for the attached fungal assembly. Compared with the free-living microbial network, the attached microbial network was structurally simple but highly modular. The attached microbes had more intra-phylum links (primarily within the phyla Actinomycetota, Alphaproteobacteria, Bacillota and Basidiomycota) and distinct co-exclusion patterns between bacteria and fungi in the modules. In summary, the study will be helpful in understanding the microbes and their interactions in the phyllosphere of A. philoxeroides, an key invasive species under national management and control.


Assuntos
Biodiversidade , Plantas , Espécies Introduzidas , Bactérias/genética , Folhas de Planta/microbiologia , Fungos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...